Fast Nonnegative Matrix Factorization Algorithms Using Projected Gradient Approaches for Large-Scale Problems

نویسندگان

  • Rafal Zdunek
  • Andrzej Cichocki
چکیده

Recently, a considerable growth of interest in projected gradient (PG) methods has been observed due to their high efficiency in solving large-scale convex minimization problems subject to linear constraints. Since the minimization problems underlying nonnegative matrix factorization (NMF) of large matrices well matches this class of minimization problems, we investigate and test some recent PG methods in the context of their applicability to NMF. In particular, the paper focuses on the following modified methods: projected Landweber, Barzilai-Borwein gradient projection, projected sequential subspace optimization (PSESOP), interior-point Newton (IPN), and sequential coordinate-wise. The proposed and implemented NMF PG algorithms are compared with respect to their performance in terms of signal-to-interference ratio (SIR) and elapsed time, using a simple benchmark of mixed partially dependent nonnegative signals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem.  At each step of ALS algorithms two convex least square problems should be solved, which causes high com...

متن کامل

Multilayer Nonnegative Matrix Factorization Using Projected Gradient Approaches

The most popular algorithms for Nonnegative Matrix Factorization (NMF) belong to a class of multiplicative Lee-Seung algorithms which have usually relative low complexity but are characterized by slow-convergence and the risk of getting stuck to in local minima. In this paper, we present and compare the performance of additive algorithms based on three different variations of a projected gradie...

متن کامل

Character Recognition Analysis with Nonnegative Matrix Factorization

In this paper, we analyze character recognition performance of three different nonnegative matrix factorization (NMF) algorithms. These are multiplicative update (MU) rule known as standard NMF, alternating least square (NMF-ALS) and projected gradient descent (NMF-PGD). They are most preferred approaches in the literature. There are lots of application areas for NMF such as robotics, bioinform...

متن کامل

Algorithms for Positive Semidefinite Factorization

This paper considers the problem of positive semidefinite factorization (PSD factorization), a generalization of exact nonnegative matrix factorization. Given an m-by-n nonnegative matrix X and an integer k, the PSD factorization problem consists in finding, if possible, symmetric k-by-k positive semidefinite matrices {A, ..., A} and {B, ..., B} such that Xi,j = trace(AB) for i = 1, ...,m, and ...

متن کامل

Accelerated Multiplicative Updates and Hierarchical ALS Algorithms for Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) is a data analysis technique used in a great variety of applications such as text mining, image processing, hyperspectral data analysis, computational biology, and clustering. In this letter, we consider two well-known algorithms designed to solve NMF problems: the multiplicative updates of Lee and Seung and the hierarchical alternating least squares of Ci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computational Intelligence and Neuroscience

دوره 2008  شماره 

صفحات  -

تاریخ انتشار 2008